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1. INTRODUCTION

Finding a suitable clustering algorithm has
long been a problem when processing remotely
sensed digital data from satellites for crop area
estimation. In the PEDITOR software system used by
the National Agricultural Statistics Service
(NASS), the data presented to a clustering
algorithm are usually assumed to represent a
single crop or ground cover type. This assumption
is justified since NASS has always had a large
amount of ground information available from the
enumerative surveys used to do area estimation
without remotely sensed data. The addition of
satellite data is intended to improve the quality
of the estimates by providing additional inputs
into a regression estimator [1]. The data, usually
from Landsat or SPOT satellites, consist of a
number of pixels (picture elements). Each pixel
represents an area on the ground and has several
channels, each representing a scaled value of
reflectance in a particular spectral band. The
scaling is between 0 and 255 so that each channel
takes one byte of storage. Typical numbers of
channels are seven for the Landsat Thematic Mapper
(TM) and three for the French SPOT multispectral
scanner. Mu1titempora1 data are often used to help
distinguish crops that may have similar spectral
characteristics in a single scene. The
mu1titempora1 data consist of two scenes over the
same area but from di fferent dates, thus
containing twice as much data as the single
(unitempora1) scene. In order to reduce the
computational burden, a subset of the available
channels is often selected and used for
processing.

The spectral characteristics of a given crop
or cover type are known as its signature. The
signature is affected by various factors both
internal and external to the crop in question. The
internal factors relate to the crop's species and
variety, as well as its stage of development at
the time a satellite image is taken. The external
factors refer to atmospheric conditions present at
the overpass times, as well as subsequent
processing operations done on the data before
delivery to the user.

* The authors thank James Mergerson for helpful
comments and suggestions.

The task of a clustering algorithm is to
generate clusters representing distinct categories
in the data, but also representing the entire data
set. The approach of having each data set
represent a specifiC crop or cover type is known
as supervised clustering.

Two clustering algorithms, known as ISODATA
[2] and CLASSY [3], have been studied. Each is
well known, but has been subject to some changes
made locally. The main basis for comparison is the
quality of estimates obtained from the same data
through clustering with both programs. Clustering
effectiveness was evaluated via statistical
measures computed by programs in PEDITOR [4,5],
the software system used for all computations
described here.

First, the two algorithms as implemented at
NASS will be described, followed by the results of
the comparison.

2. CLUSTERING METHODOLOGY

ISODATA and CLASSY both attempt to find a
collection of clusters that represent the input
data set. A cluster is represented by a mean value
vector and a variance-covariance matrix. The means
and covari ances for all c1usters are used to
perform a maximum likelihood classification over a
large area, typically an entire satellite scene.
The results of the classification are used as
inputs to a regression estimator to obtain the
crop area estimates.

Wi th both a1gori thms, the user can adj ust
various parameters that govern the clustering. A
short initialization step is followed by a series
of iterations. each having two steps. The first
step involves splitting and merging of clusters,
while the second consists of a series of smaller
iterations that do cluster adjustments. The entire
procedure stops if no more splits or merges are
possible, or if some criterion involving user
specified parameters is satisfied.

The CLASSY algorithm was developed
specifically for use with spectral data from
satellites. It is based on the assumption of a
multivariate normal mixture model for the data.
The program attempts to estimate the number of
components of the mixture via a sequence of



hypothesis tests using a likelihood ratio
criterion. The parameters of each component are
estimated using the iterative fixed point
equations that result from a maximum likelihood
formulation. By contrast, ISODATA makes no
assumptions about the distribution of the data.

In ISODATA, the user selects an initial and
minimum number of clusters. During the
initialization step, the entire data set is viewed
as a hypercube. The initial mean value vectors of
the clusters are taken at evenly spaced intervals
along the diagonal of this hypercube. During the
cluster adjustment step that follows, each pixel
is assigned to the cluster nearest to it in terms
of ordinary Euclidean distance. The cluster mean
value vectors and variance-covariance matrices are
recomputed from those pixels assigned to the
cluster. This procedure continues until a measure
of convergence, the percentage of pixels that do
not change clusters between two iterations,
exceeds a threshold value. The threshold is
selected by the user and usually falls between 98
and 100 percent. The ISODATA algorithm exits when
either no more splits or merges are possible, the
minimum number of clusters specified by the user
has been reached, or the optional maximum number
of iterations has been reached.

Splitting is only attempted on clusters for
which a dispersion measure, the largest eigenvalue
of the variance-covariance matrix, is larger than
a threshold. The two clusters to be formed by the
split are initialized using the ISODATA
initialization step, but only for pixels assigned
to the cluster to be split. The cluster adjustment
is then performed on those same pixels, for the
two new cl usters onl y. Once convergence is
attained, the new clusters are tested for
validity. The split is retained only if the
dispersion measures of the two new clusters are
less than that of the original cluster by a user
specified ratio, and if the number of pixels
assigned to each new cluster is larger than a
specified minimum value. If the split is retained,
the original cluster is discarded in favor of the
new ones. Merging occurs when the Swain-Fu
distance [6], a measure of separation between
clusters, is less than a threshold. The merge is a
straightforward union of the two clusters,
weighted by the number of pixels in each.

CLASSY is more complex than ISODATA in many
ways. A key feature of CLASSY is that. unlike
ISODATA, no pixel is completely assigned to any
cluster. Instead, there is a probability generated
for each pixel belonging to each cluster, known as
the weight of the pixel relative to the cluster.
Each cluster also has a weight, defined to be the
mean of the weights of all pixels relative to that

cluster. The initialization step of CLASSY simply
computes a single cluster based on the entire data
set, setting all pixel weights relative to that
cluster to I, and therefore the cluster weight
also to 1. Unless there is very little variability
in the data, new clusters should be generated by
splits over the next few iterations. The cluster
adjustment step consists of a series of maximum
likelihood iterations in which the weights as well
as the mean value vectors and variance-covariance
matrices are adjusted. The test of convergence is
maximum percentage of change in cluster weights
according to a parameter set by the user, usually
between two and five percent. The entire CLASSY
algorithm exits if no splits or merges are
possible, or if the number of large iterations
exceeds a value set by the user.

When cl usters are spl it, the original cluster
is not necessarily discarded. Instead, a tree of
clusters is formed in which the split clusters are
the children of the original cluster. The tree may
be pruned during a merge, as will be seen. As the
tree grows and shrinks with split and merge
deci si ons, the number of chil dren for any
particular cluster may become larger than two, so
the tree is not a binary tree. However, if a
particular cluster has only one child, that child
will be deleted during a periodic tree cleanup.

Clusters are eligible for splitting if the
skew or kurtosis values of the variance-covariance
matrices exceed a threshold. Only end node
clusters are eligible for splitting. The initial
mean value vectors and variance-covariance
matrices for the split clusters are obtained in a
manner similar to the split routine in ISODATA ,
but using those pixels having the largest weights
for the cluster being split. Cluster adjustment is
then performed via the maximum likelihood
iterations, again using only those pixels with the
largest weights for the original cluster.

Merging takes place on clusters based on a
similarity value derived from the mean value
vectors, variance-covariance matrices, and cluster
weights. It occurs when this similarity value is
higher than a threshold. Since it is possible for
a particular cluster to have a similarity value
higher than the threshold with more than one other
cluster, the similarity values of all pairs of
clusters exceeding the threshold are sorted and
processed in descending order, being careful not
to process any cluster more than once. The effect
of the merge varies depending upon the relative
positions of the two clusters in the tree, leading
to cluster deletion or actual merging. The merge
is a straightforward combination of the mean value
vectors and variance-covariance matrices, weighted
by their cluster weights.



CLASSY has been rewritten to better fit into
the PEDITOR environment. In addition. two major
changes have been made from the earlier version.
The first is that all pixels are processed in all
iterations. rather than the random sample used in
the old version. The second is that the cluster
split routine has been changed. making it similar
to the one used in ISODATA.

3. INPUT DATA

The two clustering algorithms were compared
using landsat Thematic Mapper (TM) data from 1988
for regions of western Iowa and eastern Arkansas.
The crops of interest in Iowa were corn and
soybeans. while in Arkansas they were cotton.
rice, and soybeans. The Iowa data were
unitemporal, with a satellite overpass date of
July 25. The Arkansas data were multitemporal,
with overpass dates of May 17 and August 5. For
Iowa. a11 seven TM channels were used. For
Arkansas, channels 2 through 5 from both the early
and late season scenes were used. resulting in an
eight dimensional data set.

The following is a brief description of how
the input data for the clustering algorithms were
obtained. Each spring. NASS conducts the June
Agricultural Survey (JAS). a national sample
survey that uses both an area frame and a list
frame. The area frame part of the survey involves
a stratification of each state's area into land
cover classes. Within each stratum. the land is
further subdivided into sampling units known as
segments. usually one square mile. Enumerators
visit a random sample of segments from each
stratum and collect data on crops planted in
specific fie1ds. as we11 as 1ocation of features
such as roads, woods. and water.

For this study. the satellite scenes covering
the Iowa and Arkansas regions were registered to a
map base so that pixels corresponding in location
to the JAS fields could be identified. Pixels
whose ground data contained more than one cover
type were removed and the remaining pixels were
placed in special files. called packed files. All
covers containing fewer than five percent of the
total number of pixels in the area covered by the
sample segments were combined into a single packed
file. A clipping algorithm based on principal
components [7] was used to remove outlier pixels.
The most prevalent cover types in the Iowa region
were corn (45% of the sample area), soybeans
(31%). and permanent pasture (7%). The main covers
in the Arkansas region were soybeans (32%), rice
(17%), idle cropland (16%), woods (13%), and
cotton (10%).

4. PERFORMANCE MEASURES
The test runs done for each cover using ISODATA

and CLASSY were compared using three internal and
four external clustering criteria. The internal
criteria were among the best from a large number
studied by Milligan and Cooper [8.9]. using Monte-
Carlo methods. They measure an algorithm's ability
to minimize within-cluster variability while
max imi zing sepa rat ion between cl usters. The
internal measures are as follows:

1. Calinski-Harabasz index:

c
(m-c) L [miIzi-zI2]

C.H. i=1
c n·

(c-1) L L llzij-Zi12]
i=1 j=1

2. B/W index:

3. Point-biserial correlation coefficient:

where:

m = number of pixels in data set
c = number of clusters formed
mi = number of pixels in cluster i (i=1•..•c)
Zij = vector of spectral values for cluster

i, pixel j (j=1•...•mi)
zi = mean vector of pixels in cluster i
Z = mean vector of all pixels in data set
db = sum of pairwise between-cluster

distances between pixels
dw = sum of pairwise within-cluster distances

between pixels
fb = number of between-cluster pixel pairs
fw = number of within-cluster pixel pairs
fd = total number of pixel pairs (= m(m-1)/2)
sd = standard deviation of all pairwise

distances

The pairwise distances referred to are
Euclidean distances. The three criteria are
positive measures of clustering effectiveness.
C.H. is an adjusted ratio between sums of squared
distances. analogous to an F-statistic. B/W is the
ratio between the mean between-cluster and mean
within-cluster pairwise distances. The point-
biserial coefficient is a measure of correlation
between the set of pairwise distances and a
variable taking the values 0 or 1 according to
whether or not two pixels are from the same
cluster.



The external performance measures are related
to operations done on the data after clustering,
namely classification and regression estimation.
Following each set of clustering runs, all pixels
within the sample segments were classified to a
cover. The categories and discriminant functions
formed via clustering were used by the
classification program. Prior probabilities for
the categories, computed from information on
relative acreage of the covers in the region of
interest, were used to adjust the discriminant
functions.

Two measures, percent correct and commission
error (C.E.), are direct indicators of
classification accuracy. Percent correct is the
percent of pixels reported for a given cover type
that were classified to that cover. Commission
error is the percent of those pixels classified to
a cover that were reported to a different cover.
Another index commonly used is overall percent
correct, the percent of all pixels in the data set
classified to their reported cover type.

Within the sample area for specified strata,
the NASS crop area estimation procedure uses
regression methodology to relate classified pixel
counts to the ground reference data. For this
study, only one stratum per state was used. The
counts of pixels within each sample segment
classified to a given cover were regressed against
the corresponding acreage values from the JAS
enumeration. A first order regression model was
used, generating standard least squares parameter
estimates.

In operational remote sensing, the regression
equations within strata are used to compute large
scale (region level) crop area estimates, based on
classification of all pixels in the scenes
covering the region. Proration is used to estimate
crop acreages in areas where it is not feasible to
use remotely sensed data (e.g. cloud covered
areas). The large scale regression estimates can
be compared with the direct expansion estimates
computed using only JAS survey data.

The key criterion used by NASS to evaluate
remote sensing estimation accuracy is the
regression coefficient of determination:

n
[ L (xrx) (yj-Y)) 2
j=l

n nL (Xj-x)2 L (yj_y)2
j=l j=l

where:

n = number of segments
x· = number of pixels classified to crop in

J segment j
y. = reported acres of crop in segment j

J
x = mean pixels per segment classified to

cropY = mean acres per segment reported to crop

R2 measures the goodness of fit of the regression
equation. It is closely related to relative
efficiency (R.E.), the ratio between the variances
of the direct expansion and regression estimates.

5. RESULTS

For the Iowa data set, the crops of interest
were corn and soybeans. The other two cover types
used for clustering were permanent pasture and
'other' (all remaining covers combined). For
Arkansas, the crops of interest were cotton, rice,
and soybeans, and the additional covers were idle
cropland, woods, and 'other'. Although performance
measures were computed for all of these covers,
estimation efficiency for the crops of interest is
most important to NASS.

The two clustering programs were run on the
same data sets, with the input parameters used
being the default values. These defaults had been
chosen previously after extensive testing showed
that they gave the best performance among all sets
of val ues tested. The sampl e si zes were 26
segments for Iowa and 22 for Arkansas.

Table 1 gives the computed values of seven
clustering measures for each cover type tested. It
is seen that ISODATA produced clusterings with
higher values of the three internal criteria for
a11 covers in each state. This indicates that
ISODATA was more effective than CLASSY in
producing compact, well defined clusters.

The main basis for selecting a clustering
algorithm is the quality of the resulting area
estimates, as measured by the regression
coefficient of determination. Table 1 shows that
in Iowa, ISODATA generated a higher value of R2
than CLASSY for corn, permanent pasture, and
'other'. but a lower value for soybeans. In
Arkansas, R2 was higher with ISODATA than CLASSY
for five of the six cover types, with 'other'
being the exception.

To assess whether ISODATA produced a
significantly better regression fit than CLASSY,
F-tests for equality of residual variances were
performed on all cover types for both states. The
residuals were assumed to be independent,
identically distributed, and normal with mean



zero. The tests were one-si ded wi th the
alternative being that the variance of the
regression residuals was smaller*for ISODATA than
for CLASSY. The test statistic F is equal to the
ratio between the sums of squared residuals for
ISODATA and CL~SSY, respectively. Table 2 gives
the value of F , degrees of freedom (same for
numerator and denominator), and approximate p-
value for each cover type. From the p-values, it
is seen that at the 10 percent level, ISODATA
resulted in a significantly smaller residual
variance than CLASSY for two covers in Iowa (corn
and 'other'), and two in Arkansas (cotton and
soybeans). This represents three of the five crops
of interest in the two states.

Tables 1 and 3 give the classification
accuracy measures for the two data sets. Percent
correct was higher with ISODATA than CLASSY for
all four covers in Iowa and five of the six covers
in Arkansas. The commission error was lower with
ISODATA except for one Iowa cover and one Arkansas
cover. ISODATA showed a higher overall percent
correct than CLASSY in both states.

6. DISCUSSION

The results showed that ISODATA produced more
compact, well-defined clusters than CLASSY,
1eadi ng to overa 11 better c1assifi cat ion and
estimation accuracy. However, the disparity in
performance was not that great. The fact that, in
a few cases, CLASSY gave higher values of certain
performance measures than ISOOATA is evidence that
the algorithm may still be useful.

The current study represents a preliminary
assessment of the performance of CLASSY, following
the complete reworking of the algorithm. Further
research could lead to refinements that would
improve the clustering efficiency. ISODATA has
been evaluated more thoroughly and is less likely
to be modified in the near future.

The results presented here led to a decision
to use only ISODATA in the near future. A longer
term c1ustering strategy for future operationa1
programs wi 11 be developed based on further
research on the two algorithms. Possible areas for
future investigation include the effect of the
pixel data distribution on performance of the
algorithms, the degree of improvement achieved by
using multitemporal instead of unitemporal data,
and the effect of data sampling on clustering
effectiveness.
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Table 1: Clustering Performance Measures

IOWA
Cover Method No. Cats. C.H. !Wl P.B. g2 R.E. % Corr. UL
Corn ISODATA 16 7,355.5 2.75 .324 .915 10.B3 B5.03 20.80

CLASSY 17 1.341.1 1.71 .203 .851 6.1B B2.62 25.45

Soybeans ISODATA 11 9,819.3 3.00 .415 .908 9.99 82.93 20.23
CLASSY 15 2,888.2 1.89 .274 .927 12.64 76.60 17.53

Perm. Pasture ISODATA 3 2,360.0 1.B3 .515 .729 3.39 49.99 53.B4
CLASSY 14 562.9 1.35 .162 .692 2.99 40.62 57.45

Other ISODATA 5 6,489.0 2.28 .477 .879 7.60 51.70 36.11
CLASSY 21 1,006.9 2.06 .237 .68B 2.95 50.58 44.72

ARKANSAS
Cover ~ No. Cats. C.H. !Wl P.B. g2 R.E. % Corr. % C.E.
Cotton ISODATA 4 3,B66.4 2.06 .517 .989 B4.52 87.75 11.75

CLASSY 9 739.4 1.18 .106 .977 39.94 B2.26 21.10

Rice ISODATA 7 12,904.7 3.17 .540 .937 14.46 B7.96 15.12
CLASSY 18 2,500.5 1.58 .226 .935 14.02 B2.2B 22.33

Soybeans ISODATA 10 10,738.2 2.68 .506 .844 5.80 81.29 22.61
CLASSY 15 4,680.8 1.80 .351 .716 3.18 66.23 29.16

Idle Cropland ISODATA 6 5,565.4 2.22 .518 .776 4.04 67.02 39.43
CLASSY 10 2,355.2 1.54 .291 .723 3.27 58.39 44.50

Woods ISODATA 7 7,502.4 4.25 .688 .749 3.61 76.87 23.58
CLASSY 1B 1,915.0 2.20 .197 .737 3.44 72.06 25.22

Other ISODATA 5 4,484.9 2.36 .71B .443 1.62 36.95 44.90
CLASSY 19 l,4B4.2 1.94 .266 .581 2.16 56.85 44.35

Table 2: Results of F-tests on Regression Residuals
*State Cover £ df p-value

Iowa corn .570 24 .09
soybeans 1.266 24 >.5
permanent pasture .881 24 .4
other .388 24 .013

Arkansas cotton .472 20 .05
rice .970 20 .5
soybeans .549 20 .095
idle cropland .B09 20 .4
woods .952 20 .5
other 1.329 20 >.5

Table 3: Overa 11 Percent Correct

State Method Overall % Correct
Iowa ISODATA 73.74

CLASSY 70.06

Arkansas ISODATA 75.02
CLASSY 69.09
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